Effect of a 3-Phenyl Substituent on the Acidity of Bicyclo[3.2.l]octa-2,6-diene

George Trimitsis,*^a John Rimoldi,^a Milton Trimitsis,^a James Balog,^a Fu-Tyan Lin,^b Alan Marcus,^b **Kasi Somayajula,b Samantha Jones,a Timothy Hendrickson,a and Scott Kincaida**

^a*Department of Chemistry, University of Pittsburgh at Johnstown, Johnstown, PA 15904, U.S.A.*

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.

3-Phenyl bicyclo-octadiene **(3)** has undergone base-catalysed hydrogen-deuterium exchange at **C-4** only slightly faster than the parent hydrocarbon, bicyclo-octadiene **(4),** thereby ruling out the presence of significant homoaromatic stabilization in the bicyclo-octadienyl anion **(1).**

For the past two decades the bicyclo-octadienyl anion **(1)** has been the focal point of the controversy concerning the presence of homoaromaticity in carbanions.¹ In general, experimentally derived data for **(1)** and related anions have been consistent with long range π interactions and homoaromatic stabilization,2 while nearly all theoretical studies have led to the conclusion that such effects are unlikely.^{3,4} Instead, the unusually high stablility of carbanion **(1)** relative to its 6,7-dihydro analogue **(2)** has been attributed to a number of other stabilizing mechanisms including inductive effects, negative hyperconjugation, and gegenion interactions.3

We now report the first experimentally derived evidence strongly suggesting that homoaromatic stabilization in carbanion **(l),** if at all present, must be negligibly small. Our conclusions are based on the observation that 3-phenyl**bicyclo[3.2.l]octa-2,6-diene (3)** was found to undergo basecatalysed hydrogen-deuterium exchange at C-4 only marginally faster than the unsubstituted hydrocarbon **(4).** The effect of the phenyl group at C-3 is of crucial importance since this position constitutes a node in the HOMO of anion **(1)** if the latter is allylic, but not if this species displays long range π interactions and homoaromaticity⁵ [see structure (5)].

3-Phenylbicyclo-octadiene **(3)** was synthesized from 3-bromobicyclo-octadiene (7) as shown in Scheme 1.⁶ Thus,

Scheme 1. Reagents and conditions: i, Bu^tLi/ether, -78 °C; ii, ZnCl₂, THF; iii, PhI, $Pd(P(h)₃)₄$.

treatment of the bromide **(7)7** (21.6 mmol) in ether with t-butyl-lithium (43.2 mmol) at -78 °C, gave the organolithium intermediate (8) which was subsequently reacted with $ZnCl₂$ (21.6 mmol) in tetrahydrofuran (THF) to give the organozinc reagent **(9).** The latter was added to a mixture of iodobenzene (18.0 mmol) and **tetrakis(triphenylphosphene)palladium(O)** (0.18 mmol), and stirred for 18 h at room temperature, to afford after acidification and purification (flash chromatography, silica gel 230400 mesh, light petroleum), the desired product **(3)** in *ca.* 65% yield.? The unsubstituted hydrocarbon **(4)** was also synthesized from the bromide **(7)** in one step, by treatment of the latter with t-butyl-lithium (Scheme 1), followed by an aqueous work-up. \ddagger

Next, the rate of the base-catalysed hydrogen-deuterium exchange of 3-phenylbicyclo-octadiene **(3),** relative to bicyclooctadiene **(4)** was examined. The exchange experiments were carried out in perdeuteriated dimethyl sulphoxide $([2H_6]$ DMSO) at 60.0 °C with potassium t-butoxide as the base. These conditions were chosen so that the exchange rate of **(4)** can be compared with that reported earlier by Brown and Occolowitz.^{2g} In a typical run, a mixture consisting of dienes **(3)** and **(4)** (11.8 mmol each) was added to a solution of potassium t-butoxide (0.024 M, 36 ml) in [²H₆]DMSO maintained at 60.0 ± 0.1 °C, and aliquots were withdrawn at regular intervals over a period of *ca.* 1 h. The aliquots were quenched in aqueous HCI, and subsequently extracted with pentane. Removal of the solvent gave the partially deuteriated dienes **(3)** and **(4),** and the extent of deuterium incorporation was determined by low voltage mass spectrometry *(ca.* 10 eV). The pseudo first-order rate constants (k_1) of hydrocarbons **(3)** and **(4)** were determined by plotting the log of the undeuteriated hydrocarbons *vs.* time ($\log d_0$ *vs. t*), ^{2g, 5} while their

^a Average of two runs; maximum deviation $\pm 50\%$. ^b Average of two runs; maximum deviation k5%. **c** This value will have the same experimental uncertainty as k_1 , (see footnote a). ^d This rate was computed from the data reported by Brown and Occolowitz.2g Essentially the same ratio was obtained when exchange rates for **(3)** and **(4)** were measured individually under the above conditions.

I- Hydrocarbon **(3)** was synthesized earlier by a more elaborate procedure *.2c* The compound obtained by the present method displayed spectroscopic characteristics identical to those reported in the literature.2c

\$ Compound **(4)** obtained by this method displayed spectroscopic characteristics identical to those reported in the literature.^{2c}

second-order rate constants (k_2) were obtained by dividing k_1 by the base concentration. These results, together with k_2 for bicyclo-octadiene (4) computed from literature data,^{2g} are shown in Table 1.

Examination of the data in Table 1 shows that k_2 for bicyclo-octadiene **(4)** obtained in the present study agrees well with that reported in the literature.^{2g} More significantly, a comparison of the exchange rate of **(4)** with that of 3-phenylbicyclo-octadiene **(3)** shows that the phenyl group has brought about a rate enhancement of less than a factor of ten. This rate increase is well within the range expected from the inductive effect of a benzene ring, and leads to the conclusion that the bicyclo-octadienyl anion **(6)** must receive little, if any, homoaromatic stabilization. Since the presence of the phenyl group at $C-3$ is expected to facilitate and enhance long range π interactions, it must be concluded that the unsubstituted anion **(1)** would be an even less likely candidate for homoaromatic stabilization. Rather, as theoretical studies have suggested for quite some time, the unusual stability of **(1)** relative to its 6,7-dihydro analogue **(2),** must be attributed primarily to the inductive effect of the C -6,7 double bond,³ although negative hyperconjugation and counterion interactions^{3b} may also play a role. **9**

The authors thank Mark McDermot and Paul Zimerman for a number of preliminary experiments in relation to this project, and Dr. **J.** H. Carney for stimulating discussions. This research was supported in part by a grant from the Petroleum

Research Fund, administered by the American Chemical Society.

Received, 4th October 1989; Corn. 9104239C

References

- **S.** W. Staley, in 'Reactive Intermediates,' eds. M. Jones, Jr., and R. A. Moss, vol. 3, Wiley-Interscience, New York, 1985, pp. 27-30.
- (a) R. R. Squires and R. E. Lee, *J. Am. Chem.* SOC., 1986, 108, 5078; (b) N. Hertkorn, F. H. Kohler, and G. Muller, *Angew. Chem., Int. Ed. Engl.,* 1986, 25, 468; (c) M. Christl and D. Bruckner, *Chem. Ber.,* 1986. 119, *2025:* (d) W. N. Washburn, *J. Org. Chem.,* 1983,48,4287; (e) M. Christl, H. Leininger, and D. Bruckner, *J. Am. Chem. SOC.,* 1983, **105,** 4843; (f) W. Huber, K. Mullen, R. Buch, W. Grimme, and J. Heinze, *Angew. Chem., Int. Ed. Engl.,* 1982, **21,** 301: (g) J. M. Brown and J. L. Occolowitz, *J. Chem. SOC. (B),* 1968, 411.
- (a) R. Lindh, B. J. Roos, and P. Ahlbert, *J. Am. Chem. SOC.,* 1986, 108,6554: (b) P. v. R. Schleyer, E. Kaufmann, A. J. Kos, H. Mayr, and J. Chandrasekhar, *J. Chem.* SOC., *Chem. Commun.,* 1986, 1583; (c) J. B. Grutzner and W. L. Jorgansen, *J. Am. Chem. Soc.*, 1981,103,1372; (d) E. Kaufmann, H. Mayr, J. Chandrasekhar, and P. **v.** R. Schleyer, *ibid.,* 1981, **103,** 1375.
- 4 For a theoretical study supporting homoaromaticity in (1), see, J. M. Brown, R. J. Elliot, and W. G. Richards, *J. Chem. SOC., Perkin Trans. 2,* 1982, 485.
- See, for example, Tolbert and Rajca's arguments in relation to their study of the potential homoaromatic nature of the cyclohexadienyl anion: L. M. Tolbert and **A.** Rajca, *J. Org. Chem.,* 1985,50,4805. For an earlier study conducted in our laboratories on the effect of phenyl groups on charge delocalization in carbanions, see: **G.** B. Trimitsis and **A.** Tuncay, *J. Am. Chem.* SOC., 1975, 97, 7193.
- The synthesis of 3-phenylbicyclo-octadiene (3) outlined in Scheme 1 parallels that reported recently by Negishi and co-workers for the synthesis of a series of biaryls: Ei-ichi Negishi, T. Takahashi, and A. 0. King, *Org. Synth.,* 1987, **66,** 67.
- (a) N. A. LeBel and R. N. Liesemer, *J. Am. Chem.* SOC., 1965,87, 4301; (b) N. **A.** LeBel and R. J. Maxwell, *ibid.,* 1969, 91, 2307.

^{\$} For a recent study on the homoaromatic nature of anion (1) based on the NMR spectra of a number of phenyl substituted bicyclooctadienes, including **(3),** see ref. 2c.